Telegram Group & Telegram Channel
πŸ–₯ Skorch позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ PyTorch с интСрфСйсом, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ scikit-learn (Sklearn). Π­Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡŽ PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈ понятнСС, особСнно для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ Π·Π½Π°ΠΊΠΎΠΌ с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модСли на PyTorch
lr=0.001, # Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния
batch_size=64, # Π Π°Π·ΠΌΠ΅Ρ€ Π±Π°Ρ‚Ρ‡Π°
criterion=nn.CrossEntropyLoss, # Ѐункция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ
optimizer=optim.Adam # ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€
)


Π—Π΄Π΅ΡΡŒ создаётся ΠΎΠ±Ρ‘Ρ€Ρ‚ΠΊΠ° NeuralNetClassifier, которая Π΄Π΅Π»Π°Π΅Ρ‚ модСль PyTorch совмСстимой с .fit(), .predict() ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Sklearn.

πŸ“ŒΠžΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅:


model.fit(X_train, y_train)
Π’Ρ‹ ΠΎΠ±ΡƒΡ‡Π°Π΅ΡˆΡŒ модСль Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² Sklearn. Π­Ρ‚ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ написания собствСнного Ρ†ΠΈΠΊΠ»Π° обучСния.


Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Skorch Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΡˆΡŒ:

- ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Sklearn-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ API для PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ;

- автоматичСский Π²Ρ‹Π²ΠΎΠ΄ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ обучСния;

- Π»Ρ‘Π³ΠΊΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с GridSearchCV, Pipeline ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ инструмСнтами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1793
Create:
Last Update:

πŸ–₯ Skorch позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ PyTorch с интСрфСйсом, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ scikit-learn (Sklearn). Π­Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡŽ PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈ понятнСС, особСнно для Ρ‚Π΅Ρ…, ΠΊΡ‚ΠΎ ΡƒΠΆΠ΅ Π·Π½Π°ΠΊΠΎΠΌ с API Sklearn.


from skorch import NeuralNetClassifier

model = NeuralNetClassifier(
module=MyClassifier, # Класс модСли на PyTorch
lr=0.001, # Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ обучСния
batch_size=64, # Π Π°Π·ΠΌΠ΅Ρ€ Π±Π°Ρ‚Ρ‡Π°
criterion=nn.CrossEntropyLoss, # Ѐункция ΠΏΠΎΡ‚Π΅Ρ€ΡŒ
optimizer=optim.Adam # ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ‚ΠΎΡ€
)


Π—Π΄Π΅ΡΡŒ создаётся ΠΎΠ±Ρ‘Ρ€Ρ‚ΠΊΠ° NeuralNetClassifier, которая Π΄Π΅Π»Π°Π΅Ρ‚ модСль PyTorch совмСстимой с .fit(), .predict() ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Sklearn.

πŸ“ŒΠžΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅:


model.fit(X_train, y_train)
Π’Ρ‹ ΠΎΠ±ΡƒΡ‡Π°Π΅ΡˆΡŒ модСль Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² Sklearn. Π­Ρ‚ΠΎ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ написания собствСнного Ρ†ΠΈΠΊΠ»Π° обучСния.


Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Skorch Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΡˆΡŒ:

- ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ Sklearn-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΉ API для PyTorch-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ;

- автоматичСский Π²Ρ‹Π²ΠΎΠ΄ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊ обучСния;

- Π»Ρ‘Π³ΠΊΡƒΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΡŽ с GridSearchCV, Pipeline ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ инструмСнтами Scikit-learn.

https://github.com/skorch-dev/skorch

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1793

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. β€œThe technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. β€œUnfortunately, a U.S. court stopped TON from happening.”

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Machine learning Interview from sg


Telegram Machine learning Interview
FROM USA